skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Treglown, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2025
  2. Abstract In 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed graphs and digraphs. For digraphs, they showed that for every$$\alpha \gt 0$$, there exists a constant$$C$$such that for every$$n$$-vertex digraph of minimum semi-degree at least$$\alpha n$$, if one adds$$Cn$$random edges then asymptotically almost surely the resulting digraph contains a consistently oriented Hamilton cycle. We generalize their result, showing that the hypothesis of this theorem actually asymptotically almost surely ensures the existence of every orientation of a cycle of every possible length, simultaneously. Moreover, we prove that we can relax the minimum semi-degree condition to a minimum total degree condition when considering orientations of a cycle that do not contain a large number of vertices of indegree$$1$$. Our proofs make use of a variant of an absorbing method of Montgomery. 
    more » « less
  3. null (Ed.)
    Abstract A perfect K r -tiling in a graph G is a collection of vertex-disjoint copies of the clique K r in G covering every vertex of G . The famous Hajnal–Szemerédi theorem determines the minimum degree threshold for forcing a perfect K r -tiling in a graph G . The notion of discrepancy appears in many branches of mathematics. In the graph setting, one assigns the edges of a graph G labels from {‒1, 1}, and one seeks substructures F of G that have ‘high’ discrepancy ( i.e. the sum of the labels of the edges in F is far from 0). In this paper we determine the minimum degree threshold for a graph to contain a perfect K r -tiling of high discrepancy. 
    more » « less
  4. null (Ed.)